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Mean value risk measures

@ Definition: continuity condition

> Let X34 be a Bernoulli risk with
Pr(Xag=a) =gq
Pr(Xag=0)=1—q.

For a fixed a > 0, the risk measure H satisfies the continuity condition
if, and only if, H(Xaq) is strictly increasing for 0 < g < 1, with
H(X50) =0 and H(X,1) = a.

@ Definition: mean value risk measure

» A risk measure H is said to be generated by the mean value principle if
there exists a strictly increasing function v such that
v(H(X)) = E[v(X)].

@ Theorem:

» A risk measure H satisfying the continuity condition is iterative if, and
only if, it is generated by the mean value principle.
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Comparing risk measures

@ Definition: comparability

» Two mean value principles H, with strictly increasing v; and v, are
comparable in case for all bounded risks X

H(X,v1) < H (X, ),

or the reverse inequality, with H (X, v) = v (E[v (X)]).

@ Theorem:

» Let v; and v» be two continuous and strictly increasing functions in R.
A necessary and sufficient condition for H (X, v1) and H (X, v») to be
comparable is that the function

_ -1
h=wvv

satisfies

h(E[X]) <E[h(X)],
or the reverse inequality, for all risks X € B. Hence, h has to be a
convex or a concave function.
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Risk Ordering

o Compare the "risk premiums" H (X) and H(Y).

> If v is increasing we have for X <j Y that E[v (X)] < E[v (Y)], and
as a consequence that H (X) < H(Y).

» IfE[(X —t)4+] < E[(Y — t)4] for all t, then E[v (X)] < E[v (Y)] for
all non-decreasing convex functions v, and consequently
H(X)<H(Y)

@ Convex order:

[(Y —t)y] forall ¢,

These conditions are equivalent to

E[(t—X)4+] <E[(t—Y)4] forall ¢,
and E [X] = E[Y].

IN
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Optimal risk measures

@ Premium calculation:

» Consider an exponential function v.
» Exponential premium:

@ Consider the following inequalities:

el =l o

zxXx]
— EferX] '

» Esscher premium.
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Optimal risk measures

@ Weighted Esscher premiums:

+o0 etX
H(X):/_OO EE[[et;]qu(t),

where G : R — [0, 1] and G is concave on (0, +o0) and convex on

(—00,0).
e Consequently H (X) can be written as E* [X], using the differential
+oo etXdG (t
dF)(g(') (x) :/_oo E[efx(])dFX (x)- (1)
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Application of the mean value principle to generate
distortion risk measures

@ Distortion risk measure:

» g is increasing with g(0) = 0 and g(1) = 1. The distortion risk
measure p, (X) is:

pe(X) = [ (1 Fx(x) dx @

= /01 Fxl(y)g (1—y)dy. (3)

> g1(y) = g(y) forally = p, (X) = p,, (X).

> g(x) = x implies that p,(X) > E[X] for any distortion risk measure
Pg with g(x) > x.

e Comonotonicity:

» For all (x1,y1) and (x2,¥2) : x1 < xp and y; < y» or the other way
around.

» X¢ and Y€ are maximal dependent.

» Quantiles of a comonotonic sum: F)?Clﬂ,c(p) = F)?Cl(p) + F;Cl (p).
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Distortion risk measure

@ Comonotonic risks:

g (X +Y) =p (X) +p,(Y°).

@ Bernoulli risk X4 :

1

Ps(Xeq) = (1 =)0+ | 2g'(1—y)dy = ag(q).

° pg( Xaq) as a mean value risk measure:

v

mean value function v : v (pg (Xaq)> E[v (Xaq)]
which is equivalent with: v(ag(q)) = qv(a).

If follows that: g (q) = g and v/ (ag) = v/ (a).
Hence: v and g have to be linear functions.

v

v

v
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Characterization of Wang's class of premium principles

Some desirable properties for premium pricinciples

@ For any two risks X and Y : 1 — Fx (x) <1— Fy (x) for all x >0
implies H (X) < H(Y).

@ For comonotonic risks:H (X +Y) = H(X)+ H(Y).
e H(1) =1.

e H(X) > E[X].

@ Foranyd>0: lim H[min(X,d)]=H(X).

d—+o00
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Characterization of Wang's class of premium principles

@ Lemma:

» Assume a premium principle H, having the properties 1-4. Then there
exists a unique distortion function g such that for all discrete risks X,
with only finitely many mass points, we have that:

Ho0 = [e-Fx () dx

Furthermore, g (q) > q for all g € [0,1].
@ Theorem:

» Assume that H satisfies properties 1-5. Then there exists a unique
distortion function g, with g (q) > g for all g € [0, 1], such that for all
X, we have that:

HOO = [T Fx () dx
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Risk measures for capital requirements
@ Risk in the right tail:

» Use the transformed r.v. Z:

(F);l(u)—t)+
p—t '

» Z > 1: residual risk.
» Z < 1: residual gains.

@ Measuring the risk in the right tail:

» Mean value risk measure:
v(H(Z)) =E[v(Z2)].

» take: v (x) = x for x < 1and v(x) > x for x > 1.
» 0, (X) is determined via:

(Rt —e)
b o

+
du=1—ua.
pj (X, t)—t
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Risk measures for capital requirements (cont'd)

e Solving for p, (X, t)

> p; (X, t) can be determined from:

i GHUEDR L
p;(X.t) —
o Xt =+ 1 [ = 0)dFx (0
:t+/+°°1—1F_Xa ) dx. (4)

e p, (X, t) — tis not a distortion risk measure

> o, (X, t) — t seems to be a distortion risk measure

» Distortion function g (x) = 1%,.

» g(1) = 1= > 1: hence g is not a distortion function.
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Risk measures for capital requirements (cont'd)

°p, (X, t) — tis a distortion risk measure

> Take t = F;l («) . Define g as:

g(x):min{lf 1}. (5)

> pg (X, Fx' (@) is equal to:

b O F @) = [ (1 P () o
:/F)?1 1dx +/+Oo L—Fx (x )dx

0 11—«
+o0 1 — F
= t+/ X (X —>—~Zdx.
11—«
@ Conclusion:

0. (X, Fx (@) = p, (X, Fx* ().
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Risk measures for capital requirements (cont'd)
@ comonotonic risks X{ and X5

> Quantiles are additive: Fyl\ yc (B) = Ly Fx? (B).
» Right tail of the comonotonic sum can be decomplosed into a sum of
random variables:
n
(X4 4 X =Pk e B) = X (XF = R 8)

i=1 i +

o Fort = Fy'(B), with p<1:

p1 (XF +X5) = Fxd (B) — Fx¢ (B)
= p(X1) = F (B)+p (%) — Fx, (B).

or

P ((Xf + X5 = Fyd xe (ﬁ))+>

_ ((Xf R (ﬁ)>+) +p, <<x2 — P (ﬁ))+> .
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Risk measures for capital requirements (cont'd)

@ Denote the residual risk measure, given the capital t, as
(X, t) =p—t. Then 7t(X<, t) for X¢ = X{ + X5 + ... + XS is
determined as (in case v(x) = x):

o /1 v (F ));C?}(ﬁ))”uv

where 71/ (X€, t) is obtained by means of a particular mean value
principle with a linear function v.

@ Conclusion:

» 71 (X, t) is derived out of a mean value principle.
» 71 (X, t) is comonotone additive.
» When t = F)Zl (), 7ty (X, t) is expressed as a distortion risk measure.
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Measuring the tail risk

Aplication of a mean value risk measure

@ Introduction:

» Consider a random variable X and a function ¢, strictly increasing with
¢(0) =0.¢(1) =1, ¢ (+00) = +oo:

Pr(X>p):Pr(X—t>p—t)SE{q)((Xp__tth”.

(St w

always has a solution. This solution is denoted by p,, (X t).

@ Definition :
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Haezendonck-Goovaerts risk measure risk measure

@ Definition:

» Let ¢ be a strictly increasing function with
9(0)=0,9(1)=1,¢(+) =+oco and let & € (0,1). The
Haezendonck-Goovaerts risk measure risk measure is denoted by
Py (X) :

Py (%) = —oo<tI2£'1ax[X]p¢ (X.1),
where p,, (X, t) is the solution of equation (6).

@ Positive Homogeneous and translation invariant:

» With t = F .1 (B) :

l1-a=E]|g

» We can see that:
Py (aX, 1) = ap, (X, t), for a>0,
p(P(a—i—X,t):a—f—p(P(X,t) for a € R.
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Solving for the Haezendonck-Goovaerts risk measure risk
measure

@ The Haezendonck-Goovaerts risk measure risk measure [ (X) is
determined as the solution of the system of equations:

1_“_/+oo (X_t)+>de(X), (8)
ft-i-oo(P (%) (x— t)+dFX (X)
S (S ) afx ()

p=t+

(9)

@ Special cases:
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Haezendonck-Goovaerts risk measure risk measure and
TVAR

@ The risk measure p, (S, t):

oy (S.1) = t+ T E[(S = 1).], (10)

is the solution of the equation:

» We have that TVaR(S,a) = p, (5,VaR [S, a]).

@ Comparability of the mean value principles:

S— .
> E{q) (pi(S,gtt>] =1—a, gives

Py (S.1) >p (S, 1)

@ Conclusion:
TVaR (S,a) <p, (5, VaR[S, a]). (11)
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Haezendonck-Goovaerts risk measure risk measure for two
point distributions

@ Bernoulli random variable By:

> Pr(qul)zl—Pr(Bq—O)—q
» Using the function ¢ (x) = x : p; (Bg) = min { 1,1}

> For a general choice of ¢ (x): p, (Bq) = mm{ 17 }

o Consider the distribution (aBg — )+ ,a<t:

» Pr(aBg—t=a—t)=1—-Pr(aBg—t=0)=gq.
> We get:

pi((aBg—1),) = (-omn{ L1l

pp ((Bg—1t),) = (a—t)min ),1
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The connection between the Haezendonck-Goovaerts risk
measure risk measure and distortion risk measures

@ Theorem:

» Consider a Bernoulli risk By and a function g (q) which is a distortion
measure function such that g (q) is increasing for 0 < g < 1 —« and
g(q) =1for 1 —a < g <1. A sufficient condition for the existence of

a convex function ¢ for which the equality pq)(Bq) = pg(Bgq) holds, is
that g (q) is concave for g < 1 —a.
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Proof:

e For a Bernoulli risk Bg, the equality p,, (Bg) = p, (

q0<g(1q)> N 1;“'

o Letc(q) = ) then
vy &(9)
cla)= ¢ (q) ="
v 8" (9)g(q) —2(g' (9)’
< (@)= g*(q)

for a concave distortion function g.
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Proof (Cont'd):

@ Hence, c(q) is a decreasing convex function for 0 < g < 1 —a.
o If we set x = c(q) (or ¢ = c ! (x)), we have that

dx
%—C(Q)v

@ which also means that

dg 1
dx  c'(q)
_ 1

A

< 0.
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Proof (Cont'd):
@ For the second derivative we find
d?q _ "(q)
& (c(q))?
> 0.

e Consequently, ¢! (x) is a decreasing and convex function. The
function @ (x) can be expressed in terms of ¢! (x) as follows:

and

@ The second derivative can be written as:

1y (E00) e ) —2c 7 ()
¢ ()= —(1-a) =L -
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Proof (Cont'd):

@ Using the function ¢ (q), we can write
" —(1—«a " (q 2
¢ (x) =~ >[—,”3q—, ]
q ¢(q)” " <(q)

@ and directly in terms of the distortion function as

o —-0) [ g 2 ()
¢ =5 [ g(q)qur g(q)’

+

g(a)"
o (q)] '

@ As soon as g is increasing and concave, ¢ must be convex.
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Results

@ Theorem 1:

> The distortion risk measure p (X) = [, g (1 — Fx (x))dx is
subadditive if, and only if, g is a concave distortion function, without
strictly convex sections.

@ Theorem 2:

» A Haezendonck-Goovaerts risk measure risk measure, with ¢ derived
from a concave distortion function g is subadditive.
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The generalized Haezendonck-Goovaerts risk measure risk
measure

@ Residual risk:

» The solution of

> is (X, F)?l (zx)) :

or (X Pt (@) = 0= Fx (@) = 7—Eu
@ A generalization:

» g(x) =min {1’%“ 1}.
» Corresponding distortion risk measure:

b (X Fx @) = [ B ()81~ y)ay.
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The generalized Haezendonck-Goovaerts risk measure risk
measure (cont'd)
o Consider the following relation:

(Fx'(U) = Fxt (W), g (1-U)] .

@ Solving for p gives:

brg — Fx' (@) =1 [(Fe ()~ A () 8 (1~ )]

11—«

:1ia/1(Fx1(U)—FX1()) (1— u)du

l—a/F 1—U)Clu
1—04/F g (1—u)du.
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The generalized Haezendonck-Goovaerts risk measure risk
measure (cont'd)

@ Solution:

(e (X (@) = F' (@) . (19)

@ Conclusion:

» A distortion function can be used to generate risk measures, which are
solutions of equation

(Fc (W)= Fct @) g (=)

E -1
Prg — FX (’X)

=1-—ua. (15)

» This solution can be linked with the solution of equation
-1 -1
(F' (V) = F' @)
prg — Fx' (@)
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The generalized Haezendonck-Goovaerts risk measure risk
measure (cont'd)

@ Definition:

» Let ¢ be a strictly increasing function with
9(0)=0,¢(1)=1,¢(+00) =400 and let « € (0,1). Given a
distortion function g, which is an increasing function, satisfying
g (0) =0 and g (1) = 1, the generalized Haezendonck-Goovaerts risk
measure risk measure is denoted by o, (X, t) and is the solution of:

1 _
(Fx (U) t)+ Za-)

l1-a=E|g X0 -t

Po.e

@ Theorem:
> Let @ be a continuous and strictly increasing function in R™ and g a
valid distortion function. A necessary and sufficient condition that
p(Pg(X, t) is comparable larger than p; . (X, t) (/ means a linear ¢) is
that ¢ is a convex function.

Marc Goovaerts (KU Leuven, Belgium) The interplay between risk measures June 28-30, 2012 30 / 41



Proof

o Usep,, =p, (X, t)and p,, =p, (X t).
o Assume: O, >0,

ot [q, ((Fxl<u> W), p,,g>g,(1_ U)] |

Prg Py.g

e Since P& < 1 we get

o
9 ((Fxl(u); FXl(“))+> g(1— U)] |

1—a<Ey
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Proof (cont'd)

@ On the other hand one has (using the definition of p, ,) that

R [q) <(FX1<U> _Fxl(“))+> e U)]

pl,g
(Fx'(U) = F' (@)
=¢|Eu .
pl,g
e Hence E[¢ (Z)] > ¢(E[Z]) and ¢ is convex.
@ In case ¢ is convex one immediately sees that o, - > p, ., as for
every | one gets the inequality

c[o(E20= 0y

£g'(1- V)

Y

> ¢ (E [(Fgl(u) ;Fgl(“mg’(l . U)D _
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Subadditivity, comonotonicity and monotonicity

e Consider the following axioms:

» X <ex Y = pq)(X, t) > p(P(Y, t) implies that ¢ is convex.

> In case ¢ is determined such that for a two point risk the resulting risk
measure is concave, ¢ is convex.

» Comparability of a Haezendonck-Goovaerts risk measure risk measure
and the conditional tail expectations implies that ¢ has to be convex.

@ In the framework of the Haezondonck risk measure, they are
"equivalent" in the sense that they imply convexity of the function ¢ :
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Subadditivity, comonotonicity and monotonicity (cont'd)

@ Theorem:

» Let us consider a discrete cumulative distribution function after the
inclusion of a shift t at the origin. In fact, one considers a discrete
random variable (X —t)  with

Pr((X—t)+:a,-):q,-,i:1,2 ..... n.

Suppose the function ¢ is determined by a distortion function g such

that 1—« 1
q ‘4’<g<q>)'

forq<l—aandPr((X—1t), =0)=1—Y7, g Then, the
Haezendonck-Goovaerts risk measure risk measure with a convex
function ¢ provides an upper bound for the distortion risk measure.
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Proof

o Define the Bernoulli random variable X, _, _,)q, as follows:

Pr (X(ai—ai—l)ch’ =aj — 3i—1> = dqi
Pr (X(affam)q; = O) =1—g;.

@ In this case,

_ d
FXI(U) = le(a —aj_1)q;

S

< Z Fi 0, (0
a —aj— 1
@ The distortion risk measure with distortion function g :

n

o (X=b),) =) (ai—ai-1)g(a),
i=1
June 28-30, 2012
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Proof (cont'd)

@ consequently:
1
aj—aj_ 1)‘71

ZI 1(31_3/ 1 g(ql

I].FX(

Elg

a —a; 1 )
4 al_al 1 q/)

4 (a/ ai— 1 q,)
> E
- ,Z; Zj 1 ( —daj— 1 g (qj

1 (al ai— 1 q/) < 1
= qi

L5 5-a 1>g<qj> "\e(q >
= 1—u.

@ Hence .
E 7:1 F)?(ai*aiq)qi (U) 1
¢ =l—u,
pq) ((X - t)Jr)

entails that p,, ((X —t),) is larger than the distortion risk measure
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